ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Perpetual Atomics, QSA Global produce Am fuel for nuclear space power
U.K.-based Perpetual Atomics and U.S.-based QSA Global claim to have achieved a major step forward in processing americium dioxide to fuel radioisotope power systems used in space missions. Using an industrially scalable process, the companies said they have turned americium into stable, large-scale ceramic pellets that can be directly integrated into sealed sources for radioisotope power systems, including radioisotope heater units (RHUs) and radioisotope thermoelectric generators (RTGs).
George E. Apostolakis
Nuclear Science and Engineering | Volume 53 | Number 2 | February 1974 | Pages 141-152
Technical Paper | doi.org/10.13182/NSE74-A23340
Articles are hosted by Taylor and Francis Online.
This is a theoretical investigation of the accuracy of conventional point kinetics in a multiregion reactor without feedback. The fundamental assumption of point kinetics is the splitting of the neutron density into a product of a known constant shape function and an unknown amplitude function. The model cannot acount for the distortion of the shape of the neutron distribution due to space-dependent perturbations and this results in an error in reactivity. It is to this error that bounds are derived. This is done by using the method of weighted residuals to reduce the original eigenvalue problem to that of a real asymmetric matrix. Theorems from matrix algebra are then used to find disks in the complex plane where the eigenvalues are contained. The radii of the disks depend on the perturbation in a simple manner. Examples of space-dependent step and ramp insertion of reactivity in slab reactors demonstrate the usefulness of the bound.