ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Juan Jose Ortiz, Ignacio Requena
Nuclear Science and Engineering | Volume 143 | Number 3 | March 2003 | Pages 254-267
Technical Paper | doi.org/10.13182/NSE03-A2334
Articles are hosted by Taylor and Francis Online.
The problem of optimizing refueling in a nuclear boiling water reactor is difficult since it concerns combinatorial optimization and it is NP-Complete. In order to solve this problem, many techniques have been applied, ranging from expert systems to genetic algorithms. In most of these procedures, nuclear reactor simulators are used, which require a longer computation time, to evaluate the goodness of the proposed solutions. As the processes are iterative, many evaluations with the simulator are necessary, and this makes the process extremely slow. In this paper, the use of trained neural networks (NNs) is proposed as an alternative to the simulator, and the results of the NN training are shown in order to predict some variables of interest in the optimization, such as the effective multiplication factor and some thermal limits, related to safety aspects. Finally, a study about the effect of modifying several NN parameters is shown.