ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Takashi Kiguchi
Nuclear Science and Engineering | Volume 53 | Number 1 | January 1974 | Pages 112-120
Technical Paper | doi.org/10.13182/NSE74-A23335
Articles are hosted by Taylor and Francis Online.
The modified one-mode method for fast-reactor neutron diffusion calculations was formulated by collapsing two- or three-energy-mode synthesis equations to an effective one-mode equation. The calculational procedure consists of solving an eigenvalue problem to determine the effective neutron multiplication factor and the first-mode expansion coefficient, and solving inhomogeneous problems to determine the higher mode expansion coefficients. Therefore, the computer running time nearly equals that of the conventional one-group eigenvalue problem. The accuracy of this method was investigated by comparing the results obtained by a modified one-mode method with reference 26-group calculations, employing a one-dimensional radial model of a commercial fast breeder reactor. The discrepancies between the modified one-mode method based on three-mode synthesis and the 26-group method are <0.1% in the effective multiplication factor, 5% in the control-rod reactivity and <2% in the power distribution. These results assure the applicability of this method to fast-reactor design studies.