ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE extends Centrus’s HALEU production contract by one year
Centrus Energy has announced that it has secured a contract extension from the Department of Energy to continue—for one year—its ongoing high-assay low-enriched uranium (HALEU) production at the American Centrifuge Plant in Piketon, Ohio, at an annual rate of 900 kilograms of HALEU UF6. According to Centrus, the extension is valued at about $110 million through June 30, 2026.
Takashi Kiguchi
Nuclear Science and Engineering | Volume 53 | Number 1 | January 1974 | Pages 112-120
Technical Paper | doi.org/10.13182/NSE74-A23335
Articles are hosted by Taylor and Francis Online.
The modified one-mode method for fast-reactor neutron diffusion calculations was formulated by collapsing two- or three-energy-mode synthesis equations to an effective one-mode equation. The calculational procedure consists of solving an eigenvalue problem to determine the effective neutron multiplication factor and the first-mode expansion coefficient, and solving inhomogeneous problems to determine the higher mode expansion coefficients. Therefore, the computer running time nearly equals that of the conventional one-group eigenvalue problem. The accuracy of this method was investigated by comparing the results obtained by a modified one-mode method with reference 26-group calculations, employing a one-dimensional radial model of a commercial fast breeder reactor. The discrepancies between the modified one-mode method based on three-mode synthesis and the 26-group method are <0.1% in the effective multiplication factor, 5% in the control-rod reactivity and <2% in the power distribution. These results assure the applicability of this method to fast-reactor design studies.