ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
House, Senate bills aim to improve nuclear decommissioning and waste disposal
Two bills were introduced in the last several weeks aiming to address nuclear power at the end of life—decommissioning plants and recycling used fuel.
Dermott E. Cullen
Nuclear Science and Engineering | Volume 53 | Number 1 | January 1974 | Pages 93-106
Technical Paper | doi.org/10.13182/NSE74-A23332
Articles are hosted by Taylor and Francis Online.
An iterative method is proposed for solving the homogeneous (i.e., critical) or inhomogeneous (i.e., source) linear integral Boltzmann equation for general geometry. By using successive approximations, these two classes of problems are shown to be mathematically equivalent. For the homogeneous problem, constraints on the algorithm regarding the existence of eigenvalues and the initial approximation are investigated. The algorithm is applied to isotropically scattering slabs and spheres and is compared to previously published results as well as to an independent extrapolation method., For the inhomogeneous problem, an improvement over the normal successive collision method via the use of a Neumann series expansion is used to allow economic parametric studies. Constraints on the algorithm and methods of efficiently terminating the infinite Neumann series are investigated. The solution via the proposed method as applied to isotropically scattering slabs and spheres is provided in a compact form for a range of multiplication factors and optical dimensions. The shape of the scalar flux distribution is explained., Extensions of the method to more complex problems are outlined; in particular, the solution to an energy-dependent problem in general geometry is obtained and the implications of the results are discussed.