ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Dermott E. Cullen
Nuclear Science and Engineering | Volume 53 | Number 1 | January 1974 | Pages 93-106
Technical Paper | doi.org/10.13182/NSE74-A23332
Articles are hosted by Taylor and Francis Online.
An iterative method is proposed for solving the homogeneous (i.e., critical) or inhomogeneous (i.e., source) linear integral Boltzmann equation for general geometry. By using successive approximations, these two classes of problems are shown to be mathematically equivalent. For the homogeneous problem, constraints on the algorithm regarding the existence of eigenvalues and the initial approximation are investigated. The algorithm is applied to isotropically scattering slabs and spheres and is compared to previously published results as well as to an independent extrapolation method., For the inhomogeneous problem, an improvement over the normal successive collision method via the use of a Neumann series expansion is used to allow economic parametric studies. Constraints on the algorithm and methods of efficiently terminating the infinite Neumann series are investigated. The solution via the proposed method as applied to isotropically scattering slabs and spheres is provided in a compact form for a range of multiplication factors and optical dimensions. The shape of the scalar flux distribution is explained., Extensions of the method to more complex problems are outlined; in particular, the solution to an energy-dependent problem in general geometry is obtained and the implications of the results are discussed.