ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
D. C. Hunt, Robert E. Rothe
Nuclear Science and Engineering | Volume 53 | Number 1 | January 1974 | Pages 79-92
Technical Paper | doi.org/10.13182/NSE74-A23331
Articles are hosted by Taylor and Francis Online.
In evaluating fissile-material recovery operations involving metal salvage immersed in a reagent, a criticality safety engineer must be able to identify systems of minimum critical mass. Further, he must know the effect on the reproduction factor caused by changes in process variables such as container size or the fissile concentration of the reagent. This paper reports no new experimental results but studies the criticality aspects of fissile-metal immersion by analyzing the most applicable of the existing measurements. The results are expressed in terms of the critical mass of the metal region (excluding the mass of fissile material in solution) as a function of the fissile concentration and dimensions of the liquid cylinder., The analysis indicates that the critical mass of practical combinations of uranium metal and uranium solution always exceeds that of an 18.7-g/cm3, 93.2% 235U-enriched uranium sphere centered in a 300-g/liter metal-water mixture. The corresponding conservative approximation for plutonium systems holds for a 19.7-g/cm3, 95% 239Pu sphere in a 200-g/liter metal-water mixture. The upper limit of applicability of these results is 500 g/liter for both plutonium and uranium systems. The calculational techniques described in this paper underestimate critical masses of uranium by ∼5%; the calculated masses of plutonium are sufficiently overestimated to be conservative in practical applications.