ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Perpetual Atomics, QSA Global produce Am fuel for nuclear space power
U.K.-based Perpetual Atomics and U.S.-based QSA Global claim to have achieved a major step forward in processing americium dioxide to fuel radioisotope power systems used in space missions. Using an industrially scalable process, the companies said they have turned americium into stable, large-scale ceramic pellets that can be directly integrated into sealed sources for radioisotope power systems, including radioisotope heater units (RHUs) and radioisotope thermoelectric generators (RTGs).
Benjamin S. Wang, George H. Miley
Nuclear Science and Engineering | Volume 52 | Number 1 | September 1973 | Pages 130-141
Technical Paper | doi.org/10.13182/NSE73-A23296
Articles are hosted by Taylor and Francis Online.
A Monte Carlo simulation model for radiation-induced plasmas with nonlinear properties due to recombination has been developed employing a piecewise-linearized predict-correct technique. Several variance reduction techniques are used, including antithetic variates. The resulting code is applied to the determination of the electron energy distribution for a noble-gas plasma created by alpha-particle irradiation. Results are presented for helium with an electron source rate from 1014 to 1018 electrons/(cm3 sec), initial energies from 70 to 1500 eV, pressures from 10 to 760 Torr, and electric-field-to-pressure ratios from 0 to 10 V/(cm Torr). The low-energy portion of the distribution function approaches a Maxwellian for zero field and Druyvesteyn’s distribution with an applied electric field. However, above the ionization potential and extending to the source energy, a parabolic-shaped distribution (tail) occurs.