ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New coolants, new fuels: A new generation of university reactors
Here’s an easy way to make aging U.S. power reactors look relatively youthful: Compare them (average age: 43) with the nation’s university research reactors. The 25 operating today have been licensed for an average of about 58 years.
Constantine P. Tzanos, Elias P. Gyftopoulos, Michael J. Driscoll
Nuclear Science and Engineering | Volume 52 | Number 1 | September 1973 | Pages 84-94
Technical Paper | doi.org/10.13182/NSE73-3
Articles are hosted by Taylor and Francis Online.
An iterative optimization method based on linearization and linear programming is developed. The method can be used for the determination of the material distributions in a fast reactor which maximize or minimize integral reactor parameters that are linear functions of the neutron flux and the material volume fractions. The method has been applied to the problems of optimization of the fuel distribution in a reactor of fixed power output, constrained power density, and constrained material volume fractions so as to obtain (a) a maximum initial breeding gain, (b) a minimum critical mass, and (c) a minimum sodium void reactivity. Under this realistic set of constraints, numerical results show that the same fuel distribution yields maximum breeding gain, minimum critical mass, minimum sodium void reactivity, and uniform power density.