ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE extends Centrus’s HALEU production contract by one year
Centrus Energy has announced that it has secured a contract extension from the Department of Energy to continue—for one year—its ongoing high-assay low-enriched uranium (HALEU) production at the American Centrifuge Plant in Piketon, Ohio, at an annual rate of 900 kilograms of HALEU UF6. According to Centrus, the extension is valued at about $110 million through June 30, 2026.
Constantine P. Tzanos, Elias P. Gyftopoulos, Michael J. Driscoll
Nuclear Science and Engineering | Volume 52 | Number 1 | September 1973 | Pages 84-94
Technical Paper | doi.org/10.13182/NSE73-3
Articles are hosted by Taylor and Francis Online.
An iterative optimization method based on linearization and linear programming is developed. The method can be used for the determination of the material distributions in a fast reactor which maximize or minimize integral reactor parameters that are linear functions of the neutron flux and the material volume fractions. The method has been applied to the problems of optimization of the fuel distribution in a reactor of fixed power output, constrained power density, and constrained material volume fractions so as to obtain (a) a maximum initial breeding gain, (b) a minimum critical mass, and (c) a minimum sodium void reactivity. Under this realistic set of constraints, numerical results show that the same fuel distribution yields maximum breeding gain, minimum critical mass, minimum sodium void reactivity, and uniform power density.