ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Won S. Park, Yong H. Kim, Chang K. Park, Jong S. Chung, Chang H. Kim
Nuclear Science and Engineering | Volume 143 | Number 2 | February 2003 | Pages 188-201
Technical Paper | doi.org/10.13182/NSE03-A2329
Articles are hosted by Taylor and Francis Online.
A design study for the fission product (FP) target was performed to maximize the transmutation of 99Tc and 129I in the Hybrid Power Extraction Reactor (HYPER) system without causing any core safety concerns. Localized thermal flux is obtained by inserting moderators such as CaH2. Many types of target design concepts have been investigated. The concept where 99Tc is loaded as a plate type in the outermost region and 129I is loaded as NaI rods mixed with CaH2 rods in the inner region is concluded to be the most effective in terms of transmutation rate and core power peaking. The proposed FP target is estimated to have a net transmutation rate of 5.53%/effective full-power year (EFPY) and 11.41%/EFPY for 99Tc and 129I, respectively, which are much higher compared to the transmutation rates in other fast neutron systems. In addition, the support ratios of the HYPER system for 99Tc and 129I are 5.7 and 4.0, respectively, very similar to the support ratio of TRU. The maximum pin power peaking with the loading of the FP target is 1.232, which is within the acceptable range. The loading of the FP target increases the inventory of TRU and makes the core coolant void coefficient more negative but the Doppler coefficient less negative. The proposed FP target configuration causes no safety problems in terms of core neutronics.