ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
W. G. Davey, P. I. Amundson, P. J. Collins, R. G. Palmer
Nuclear Science and Engineering | Volume 51 | Number 4 | August 1973 | Pages 415-440
Technical Paper | doi.org/10.13182/NSE73-A23276
Articles are hosted by Taylor and Francis Online.
An extensive series of measurements has been made in the Demonstration Reactor benchmark, the Zero Power Plutonium Reactor (ZPPR) Assembly 2, to provide physics data necessary for LMFBR design. An important objective of the program was to test the applicability of data obtained in the plate-fueled critical to a power reactor design with a more homogeneous composition. Sufficient, fuel inventory was obtained in the form of rods which were used, within sodium-filled calandria, to build large zones in which direct comparisons of parameters could be made with those in the plate zones. A variety of quantities worth of Compared in the two environments. In addition to the direct reactivity worth of rod-for-plate substitution, comparisons are given for small sample and rates,reaction Worths’ neutron spectrum, reaction rate ratios, in-cell reaction rates, reaction rate scans, sodium-void coefficient, and 238U Doppler coefficient. The experiments are Compared With calculations using the ARC system and NDFB/Version-I data. It is found that many parameters of interest can be adequately studied in the plate geometry and that the calculation methods, in genidentified a good representation of the heterogeneity effects. Some areas are identified in which further experimental and analytical study is needed.