ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
C. Y. Fu, F. B. Guimaraes, L. C. Leal
Nuclear Science and Engineering | Volume 143 | Number 2 | February 2003 | Pages 164-176
Technical Paper | doi.org/10.13182/NSE03-A2327
Articles are hosted by Taylor and Francis Online.
High-energy transport codes for the design of accelerator-driven systems such as the Spallation Neutron Source use nuclear reaction models as the incident particle, and the secondary particles are transported through various materials. These reaction models are computationally fast but are unreliable at energies below ~200 MeV. As a partial remedy, an evaluated cross-section library up to 150 MeV known as LA150 was developed by international cooperation and made available for such design work. In the present project we have been developing a model code suitable for improving LA150 and extending it to higher energies. This new model code combines microscopically the semiclassical results of an intranuclear-cascade model with the spin-dependent counterparts of a preequilibrium Hauser-Feshbach model. To achieve this microscopic combination, an approximation, explained in this paper, is needed to add spin distributions to the semiclassical excitation spectra in every residual nuclide. The initial capability of this code is demonstrated by comparisons with experimental production cross sections of the radioisotopes 56Co, 55Co, 54Mn, 52Mn, 52Fe, 51Cr, 48Cr, 48V, 47Sc, and 46Sc induced by proton projectiles on Fe from reaction thresholds to 3 GeV. The overall agreement of our calculated results with experimental data looks very good in view of the 29 contributions in recent model code intercomparisons with measurements.