ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Ariz. governor vetoes “fast track” bill for nuclear
Gov. Katie Hobbs put the brakes on legislation that would have eliminated some of Arizona’s regulations and oversight of small modular reactors, technology that is largely under consideration by data centers and heavy industrial power users.
K. A. Alfieri, R. C. Block, P. J. Turinsky
Nuclear Science and Engineering | Volume 51 | Number 1 | May 1973 | Pages 25-31
Technical Paper | doi.org/10.13182/NSE73-A23254
Articles are hosted by Taylor and Francis Online.
Low resolution transmission experiments on 14- and 20-in.-thick samples of iron have been conducted at Rensselaer Polytechnic Institute’s linear accelerator to evaluate the adequacy of various data files in predicting total neutron cross-section minima from 24 to 750 keV. From our transmission area analysis we conclude that both the Penny-Kinney file and Version-19 file (incorporating the Columbia minima measurement) generally overestimate the total cross section in the region of minima, with the Version-19 file strongly preferred for accurate minima prediction. With the ENDF/B-III (MAT 1180) file identical to the Penny-Kinney file (except about the 24-keV minima), similar negative conclusions apply. At approximately the 24-keV minima where our resolution is sufficient to evaluate θt(E), we obtain excellent agreement with ENDF/B-III (MAT 1180). We quote (σt)min = 0.42 ± 0.03 b at E = 24.3 ± 0.1 keV.