ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
A. M. Christie, C. G. Poncelet
Nuclear Science and Engineering | Volume 51 | Number 1 | May 1973 | Pages 10-24
Technical Paper | doi.org/10.13182/NSE73-A23253
Articles are hosted by Taylor and Francis Online.
The control of spatial xenon-induced oscillations in large power reactors is considered from the point of view of practical operator manual control. A control strategy is developed based on control theory concepts and considerations of the physics of the problem. It is shown that oscillations can be eliminated by a simple control action consisting of positioning a control rod in a specified location for a specified length of time; upon retrieval of the control rod to its equilibrium position, the flux, xenon and iodine distributions will have returned to equilibrium conditions. A control equation is derived from which the control rod insertion time and the duration of control can be calculated. For large pressurized water reactors of current and anticipated designs, control rod insertion times are in the range from one to four hours before the peak in the oscillation, while control times vary from one-half to two hours. Digital diffusion theory simulations are described which tend to verify the control concepts developed in the paper. Constraints in local power peaking are introduced by considering control at off-optimal times. The study provides guidelines for operator control which is near optimal in the sense that control actions are minimized in number and are most effective in terms of eliminating the oscillation.