ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Ariz. governor vetoes “fast track” bill for nuclear
Gov. Katie Hobbs put the brakes on legislation that would have eliminated some of Arizona’s regulations and oversight of small modular reactors, technology that is largely under consideration by data centers and heavy industrial power users.
R. W. Stoughton, J. Halperin, C. E. Bemis, H. W. Schmitt
Nuclear Science and Engineering | Volume 50 | Number 2 | February 1973 | Pages 169-171
Technical Note | doi.org/10.13182/NSE73-A23241
Articles are hosted by Taylor and Francis Online.
The neutron multiplicities P(n) in the spontaneous fission of 246Cm, 248Cm, and 252Cf have been measured in a 3He neutron counter assembly. The efficiency ∈ for detection of a single neutron was measured to be 0.360, based on (average number of neutrons per fission) = 3.73 for 252Cf spontaneous fission. Using this value of ∈ and assuming a Gaussian distribution p(v) for the emitted neutrons, we fitted our observed P(n), corrected for small background and pile-up effects, to the model by the method of least squares in which the Gaussian width σv and were the parameters of fit. Values of p(v) were then calculated from the resulting Gaussian function. In the case of 252Cf, our values of p(v) agree well with literature values; the p(v) values for the curium isotopes have not been measured previously as far as we know. The values of for both 246 Cm and 248Cm fall on a straight line through existing experimental values for the nuclides 242Cm, 244Cm, and 250Cm in a plot of versus mass number; our values were 2.86 ± 0.06 and 3.14 ± 0.06 for 246Cm and 248Cm, respectively.