ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE extends Centrus’s HALEU production contract by one year
Centrus Energy has announced that it has secured a contract extension from the Department of Energy to continue—for one year—its ongoing high-assay low-enriched uranium (HALEU) production at the American Centrifuge Plant in Piketon, Ohio, at an annual rate of 900 kilograms of HALEU UF6. According to Centrus, the extension is valued at about $110 million through June 30, 2026.
P. Goldschmidt
Nuclear Science and Engineering | Volume 50 | Number 2 | February 1973 | Pages 153-163
Technical Paper | doi.org/10.13182/NSE73-A23239
Articles are hosted by Taylor and Francis Online.
A model is presented which enables us to find the distribution of fuel enrichment that minimizes the fuel cycle cost of a fast reactor, subject to constraints on the enrichment, power, and power density. The reactor is described by a discontinuous one-group diffusion model in slab geometry.Making use of Pontryagin’s Maximum Principle, as extended by Gossez and by Vincent and Mason, the optimal sequence of control (enrichment) zones is found a priori. The latter consists of a central constant power density zone, a maximum enrichment zone, a minimum enrichment zone, and a reflector.The numerical solution of the problem is based on an automatic double iteration search procedure requiring no input trial function.Under the economic conditions considered, it seems preferable to start up the first fast breeder demonstration plants with a core surrounded by reflector elements; radial blanket subassemblies should be inserted only later, and progressively, when fabrication costs decrease and the operational knowledge improves.