ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
J. Ligou
Nuclear Science and Engineering | Volume 50 | Number 2 | February 1973 | Pages 135-146
Technical Paper | doi.org/10.13182/NSE73-A23237
Articles are hosted by Taylor and Francis Online.
Polynomial approximations in space are used for solving the integral transport equations for multilayers systems, in one dimensional spherical or cylindrical geometry with scattering anisotropy. These polynomial approximations are applied to the neutron sources (collided neutrons) in each layer, in such a way that the mean quadratic error is a minimum. The form of this approximation allows a less complicated treatment of the anisotropic components of the collided neutron sources than the usual approach (collision probabilities for uniform sources). In order to reduce the number of necessary integral equations when the scattering anisotropy is present, some differential equations relating the spherical harmonics components of the angular flux are used. This is very useful from a numerical point of view, especially when polynomial approximations in space are introduced. A very important link between the scattering anisotropy and the degree of polynomial approximations is also derived. Based on this method the SHADOK code was written. Several numerical examples dealing with multigroup calculations of fast critical assemblies for spherical geometry (FRO-GODIVA-TOPSY-ZPR.43/8) are given. The results show that (a) the large optical dimensions are not a problem for this improved integral method, (b) the scattering.anisotropy (at least PI) does not increase the time of computation, and (c) the heterogeneous systems (reflected cores) can be calculated easily. The calculations with the proposed method are considerably faster than those of the SN method.