ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Ariz. governor vetoes “fast track” bill for nuclear
Gov. Katie Hobbs put the brakes on legislation that would have eliminated some of Arizona’s regulations and oversight of small modular reactors, technology that is largely under consideration by data centers and heavy industrial power users.
M. J. Haire, L. R. Zumwalt
Nuclear Science and Engineering | Volume 50 | Number 2 | February 1973 | Pages 91-97
Technical Paper | doi.org/10.13182/NSE73-A23232
Articles are hosted by Taylor and Francis Online.
To determine fission product-graphite sorption behavior, an experimental and analytical study was conducted to obtain a model which would predict the vapor pressures of mixtures of sorbed fission product metals as a function of temperature and composition.The graphite sorbents studied were SP-1C, a very pure natural flake graphite, and TS-688, a typical needle-coke nuclear-grade graphite. Cesium and rubidium tagged with 137Cs and 86Rb were the sorbates, and the pseudo-isopiestic method was used to determine sorbate concentrations as a function of temperature and vapor pressure. Three models were examined for their capability in predicting binary mixed sorption behavior.Experiments showed the following: (a) The vapor pressure of a species varies inversely with the fraction of total sorbate metal present at a given sorbate concentration and temperature; (b) thermodynamic and FREVAP models were the most successful in the prediction of binary sorption behavior from single component isotherm data. It is concluded that if the departure from ideal adsorption behavior is not known, either model may be used in the calculation of fission product release.