ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
M. J. Haire, L. R. Zumwalt
Nuclear Science and Engineering | Volume 50 | Number 2 | February 1973 | Pages 91-97
Technical Paper | doi.org/10.13182/NSE73-A23232
Articles are hosted by Taylor and Francis Online.
To determine fission product-graphite sorption behavior, an experimental and analytical study was conducted to obtain a model which would predict the vapor pressures of mixtures of sorbed fission product metals as a function of temperature and composition.The graphite sorbents studied were SP-1C, a very pure natural flake graphite, and TS-688, a typical needle-coke nuclear-grade graphite. Cesium and rubidium tagged with 137Cs and 86Rb were the sorbates, and the pseudo-isopiestic method was used to determine sorbate concentrations as a function of temperature and vapor pressure. Three models were examined for their capability in predicting binary mixed sorption behavior.Experiments showed the following: (a) The vapor pressure of a species varies inversely with the fraction of total sorbate metal present at a given sorbate concentration and temperature; (b) thermodynamic and FREVAP models were the most successful in the prediction of binary sorption behavior from single component isotherm data. It is concluded that if the departure from ideal adsorption behavior is not known, either model may be used in the calculation of fission product release.