ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Zhengjun Zhang, Xiuquan Sun, Chonghai Cai, Qingbiao Shen, Yinlu Han
Nuclear Science and Engineering | Volume 143 | Number 1 | January 2003 | Pages 90-98
Technical Note | doi.org/10.13182/NSE03-A2321
Articles are hosted by Taylor and Francis Online.
Reactions of protons induced on 208Pb and 209Bi, the important target materials in accelerator- driven systems, are studied. First, a set of proton optical model potential parameters for heavy elements is obtained up to 500 MeV. Theoretical total reaction cross sections and elastic scattering angular distributions determined by this set of optical model parameters reproduce the experimental data well. Second, several nuclear reaction models (optical model, intranuclear cascade mechanism for nucleon emission, preequilibrium theory based on the exciton model, evaporation model, and the direct reaction theory) are extended for medium energy, and the various reactions of p + 208Pb and 209Bi are calculated in the energy region from threshold up to 250 MeV. In particular, the inclusive cross sections of six emission particles and the production cross sections of all residual nuclei, as well as their energy spectra, are calculated and discussed.