ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Tadashi Ushio, Toshikazu Takeda, Masaaki Mori
Nuclear Science and Engineering | Volume 143 | Number 1 | January 2003 | Pages 61-80
Technical Note | doi.org/10.13182/NSE03-A2318
Articles are hosted by Taylor and Francis Online.
The effect caused by the circular approximation of the geometry for cell calculations in light water reactors is studied using the continuous-energy Monte Carlo code MVP. It was found that the kinf values were underestimated with this approximation of the geometry, especially in the case of a mixed-oxide fuel cell. To treat the square geometry, including the resonance calculation, KRAM-B was developed based on the two-dimensional neutron transport code KRAM as a deterministic cell calculation code. KRAM-B solves the neutron transport equation using a combination of the subgroup method and the characteristics method. The subgroup method is able to perform the resonance calculation faster than the ultrafine energy group calculation and predict the resonance cross section more accurately than the Dancoff factor method. It was found that the kinf values and the effective microscopic resonance cross sections by KRAM-B agreed well with the reference MVP results.