ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Tadashi Ushio, Toshikazu Takeda, Masaaki Mori
Nuclear Science and Engineering | Volume 143 | Number 1 | January 2003 | Pages 61-80
Technical Note | doi.org/10.13182/NSE03-A2318
Articles are hosted by Taylor and Francis Online.
The effect caused by the circular approximation of the geometry for cell calculations in light water reactors is studied using the continuous-energy Monte Carlo code MVP. It was found that the kinf values were underestimated with this approximation of the geometry, especially in the case of a mixed-oxide fuel cell. To treat the square geometry, including the resonance calculation, KRAM-B was developed based on the two-dimensional neutron transport code KRAM as a deterministic cell calculation code. KRAM-B solves the neutron transport equation using a combination of the subgroup method and the characteristics method. The subgroup method is able to perform the resonance calculation faster than the ultrafine energy group calculation and predict the resonance cross section more accurately than the Dancoff factor method. It was found that the kinf values and the effective microscopic resonance cross sections by KRAM-B agreed well with the reference MVP results.