ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Jeffrey A. Favorite
Nuclear Science and Engineering | Volume 142 | Number 3 | November 2002 | Pages 327-341
Technical Paper | doi.org/10.13182/NSE02-A2311
Articles are hosted by Taylor and Francis Online.
The standard implementation of the differential operator (Taylor series) perturbation method for Monte Carlo criticality problems has previously been shown to have a wide range of applicability. In this method, the unperturbed fission distribution is used as a fixed source to estimate the change in the keff eigenvalue of a system due to a perturbation. A new method, based on the deterministic perturbation theory assumption that the flux distribution (rather than the fission source distribution) is unchanged after a perturbation, is proposed in this paper. Dubbed the F-A method, the new method is implemented within the framework of the standard differential operator method by making tallies only in perturbed fissionable regions and combining the standard differential operator estimate of their perturbations according to the deterministic first-order perturbation formula. The F-A method, developed to extend the range of applicability of the differential operator method rather than as a replacement, was more accurate than the standard implementation for positive and negative density perturbations in a thin shell at the exterior of a computational Godiva model. The F-A method was also more accurate than the standard implementation at estimating reactivity worth profiles of samples with a very small positive reactivity worth (compared to actual measurements) in the Zeus critical assembly, but it was less accurate for a sample with a small negative reactivity worth.