ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Toshihiro Yamamoto, Yoshinori Miyoshi
Nuclear Science and Engineering | Volume 142 | Number 3 | November 2002 | Pages 305-314
Technical Paper | doi.org/10.13182/NSE02-A2309
Articles are hosted by Taylor and Francis Online.
Mechanisms of a positive temperature reactivity coefficient that occurs in a dilute plutonium solution are investigated based on the perturbation theory and the four-factor formula. The temperature coefficient of a solution fuel is positive if the adjoint flux increases with neutron energy between 0.05 and 0.2 eV. As compared to 239Pu, 241Pu has a tendency to make the temperature coefficient of a plutonium solution positive because of the energy dependence of the capture cross section of 241Pu. As 241Pu in a plutonium solution decays into 241Am with time, the temperature coefficient of the solution becomes more positive. Since the capture cross sections of most neutron absorbers such as boron and gadolinium decrease with increasing neutron energy between 0.05 and 0.2 eV, soluble absorbers in a plutonium solution make the temperature coefficient positive for higher-concentration plutonium solutions. Cadmium and samarium dissolved in a dilute plutonium solution can exceptionally keep the temperature coefficient negative because of the energy dependence of the capture cross sections. A fixed neutron absorber generally makes the temperature coefficient of a plutonium solution negative regardless of the property of absorber materials.