ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Supplier Showcase focus: Reducing cumulative radiological exposure
The American Nuclear Society is hosting a new Supplier Showcase webinar, “Reducing Cumulative Radiological Exposure with Advanced Source Term Removal Technologies,” on October 15 from 2:00 p.m. to 3:00 p.m. (EDT) on recent advancements in decontamination technology.
The webinar is free for all viewers and requires registration.
Toshihiro Yamamoto, Yoshinori Miyoshi
Nuclear Science and Engineering | Volume 142 | Number 3 | November 2002 | Pages 305-314
Technical Paper | doi.org/10.13182/NSE02-A2309
Articles are hosted by Taylor and Francis Online.
Mechanisms of a positive temperature reactivity coefficient that occurs in a dilute plutonium solution are investigated based on the perturbation theory and the four-factor formula. The temperature coefficient of a solution fuel is positive if the adjoint flux increases with neutron energy between 0.05 and 0.2 eV. As compared to 239Pu, 241Pu has a tendency to make the temperature coefficient of a plutonium solution positive because of the energy dependence of the capture cross section of 241Pu. As 241Pu in a plutonium solution decays into 241Am with time, the temperature coefficient of the solution becomes more positive. Since the capture cross sections of most neutron absorbers such as boron and gadolinium decrease with increasing neutron energy between 0.05 and 0.2 eV, soluble absorbers in a plutonium solution make the temperature coefficient positive for higher-concentration plutonium solutions. Cadmium and samarium dissolved in a dilute plutonium solution can exceptionally keep the temperature coefficient negative because of the energy dependence of the capture cross sections. A fixed neutron absorber generally makes the temperature coefficient of a plutonium solution negative regardless of the property of absorber materials.