ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
B. D. Murphy, R. T. Primm III
Nuclear Science and Engineering | Volume 142 | Number 3 | November 2002 | Pages 258-269
Technical Paper | doi.org/10.13182/NSE02-A2306
Articles are hosted by Taylor and Francis Online.
This work examines the capabilities of simulation codes to predict the concentration of nuclides in spent reactor fuel, in particular mixed-oxide (MOX) fuel, via comparisons with destructive radiochemical analyses performed on irradiated samples. We report on three MOX samples irradiated in a pressurized water reactor (PWR) and two UO2 samples irradiated in a different PWR. Actinide and fission-product concentrations were measured and were compared with concentration values obtained from simulation studies. The actinides include isotopes of uranium, neptunium, plutonium, americium, and curium. The fission products include isotopes of cesium, neodymium, samarium, europium, and gadolinium as well as 90Sr, 95Mo, 99Tc, 101Ru, 106Ru, 103Rh, 109Ag, 125Sb, 129I, and 144Ce. For many of the actinides, the predictions are quite good when compared with the measured values; but concentrations of some tend to be overpredicted. The cesium and neodymium, and some samarium concentrations, are well predicted, but some of the other fission products show variable results. The sensitivity of some of the results to sample-burnup estimates is discussed.