ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Douglas W. Stamps
Nuclear Science and Engineering | Volume 142 | Number 2 | October 2002 | Pages 237-243
Technical Note | doi.org/10.13182/NSE02-A2304
Articles are hosted by Taylor and Francis Online.
A series of experiments was conducted in a right circular cylinder to determine the flow pattern that develops when air circulates from the drag induced by falling water sprays. Two different flow patterns were visually observed and recorded by the distribution of spray mass flux. In one pattern, the airflow took the form of a single three-dimensional toroidal vortex with the air flowing up the sides of the container and down the center thereby concentrating the water sprays in the center of the container. The toroidal vortex was an unstable flow pattern unless the water spray was uniformly distributed along the ceiling. The second pattern was stable and took the form of a single nearly two-dimensional stationary roll with the air flowing up one side of the container and down the other thereby concentrating the water sprays along the downflow side. As the water pressure in the nozzles was increased, the roll did not remain stationary but rotated slowly about the central vertical axis of the container.