ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
The when, where, why, and how of RIPB design
The American Nuclear Society’s Risk-informed, Performance-based Principles and Policy Committee (RP3C) held another presentation in its monthly Community of Practice (CoP) series.
Watch the full webinar here.
R. van Geemert, F. Jatuff, P. Grimm, R. Chawla
Nuclear Science and Engineering | Volume 142 | Number 1 | September 2002 | Pages 96-106
Technical Note | doi.org/10.13182/NSE02-A2291
Articles are hosted by Taylor and Francis Online.
Optimization criteria for the representability of numerical models for the estimation of relative reactivity changes, due to localized perturbations in boiling water reactor (BWR) lattices, have been theoretically developed and tested. The validity of the derived theoretical expressions has been assessed for the case of a reactivity perturbation corresponding to the removal of an individual fuel pin from a nominal BWR assembly, thus effectively substituting the pin by water. Such reactivity effects are of importance in the context of evaluating advanced fuel element designs, e.g., those employing part-length rods. Two different geometry models have been implemented for the LWR-PROTEUS critical research facility [full core (FC) and a smaller, reduced geometry (RG)], using the light water reactor assembly code BOXER, and calculations have been performed for the nominal cases (all pins present in the central test assembly) and the perturbed cases (individual pins removed). The FC results have been compared with the results of the RG model with two different boundary conditions (reflective and critical albedo). The comparisons have shown that the results of critical albedo calculations feature superior representability. Differences in relative reactivity effects, with respect to results of the FC calculation, are found to be within the range ±1 to ±4%.