ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
The when, where, why, and how of RIPB design
The American Nuclear Society’s Risk-informed, Performance-based Principles and Policy Committee (RP3C) held another presentation in its monthly Community of Practice (CoP) series.
Watch the full webinar here.
M. E. Dunn
Nuclear Science and Engineering | Volume 142 | Number 1 | September 2002 | Pages 48-56
Technical Note | doi.org/10.13182/NSE02-A2286
Articles are hosted by Taylor and Francis Online.
The Reich-Moore (RM) formulation is used extensively in many isotope/nuclide evaluations to represent neutron cross-section data for the resolved-resonance region. The RM equations require the evaluation of complex matrices (i.e., matrices with complex quantities) that are a function of the resonance energy and corresponding resonance parameters. Although the RM equations are documented in the open literature, computational pitfalls may be encountered with the implementation of the RM equations in a cross-section processing code. Based on experience, numerical instabilities in the form of nonphysical oscillations can occur in the calculated absorption, capture, or elastic scattering cross sections. To illustrate possible numerical instabilities, the conventional RM equations are presented, and the conditions that lead to numerical problems in the cross-section calculations are identified and demonstrated for 28Si and 60Ni. In an effort to circumvent the computational problems, detailed or revised RM expressions have been developed to efficiently and accurately calculate cross sections for neutron-induced reactions in the resolved-resonance region. The revised equations can be used to avoid numerical problems associated with the implementation of the RM formulation in a cross-section processing code. The revised Reich-Moore equations are also used to demonstrate the improved cross-section results (i.e., without numerical instabilities) for 28Si and 60Ni.