ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Makoto Tsuiki, Sverre Hval
Nuclear Science and Engineering | Volume 141 | Number 3 | July 2002 | Pages 218-235
Technical Paper | doi.org/10.13182/NSE02-A2279
Articles are hosted by Taylor and Francis Online.
A new nodal diffusion method for the neutronics analysis of light water reactor cores has been developed. The method is based on an expansion of neutron fluxes within a node into a series of functions that are numerically obtained from single-assembly calculations without the process of assembly homogenization. The assembly heterogeneity effect can be taken into account in whole-core calculations in a consistent way with the heterogeneous single-assembly calculations, providing highly accurate results including intranodal pin-power distributions. The expansion coefficients are determined by a classical Ritz procedure in such a way that the solution becomes the most accurate - in the least squares sense - approximation to the exact solution. The present method was implemented in a two-dimensional nodal diffusion code and tested for benchmark cases both for boiling water reactors and pressurized water reactors. The root-mean-square errors of both node average powers and nodal maximum pin powers were observed to be <1%, with computing time of less than a few percent of the reference, fine-mesh calculation. It was also observed that the accuracy of the present method could be improved to almost any desired degree only by increasing the order of expansion polynomials.