ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
M. F. Murphy, A. Lüthi, R. Seiler, P. Grimm, O. Joneja, A. Meister, R. van Geemert, F. Jatuff, R. Brogli, R. Jacot-Guillarmod, T. Williams, S. Helmersson, R. Chawla
Nuclear Science and Engineering | Volume 141 | Number 1 | May 2002 | Pages 32-45
Technical Paper | doi.org/10.13182/NSE02-A2264
Articles are hosted by Taylor and Francis Online.
Accurate critical experiments have been performed for the validation of total fission (Ftot) and 238U-capture (C8) reaction rate distributions obtained with CASMO-4, HELIOS, BOXER, and MCNP4B for the lower axial region of a real Westinghouse SVEA-96+ fuel assembly. The assembly comprised fresh fuel with an average 235U enrichment of 4.02 wt%, a maximum enrichment of 4.74 wt%, 14 burnable-absorber fuel pins, and full-density water moderation. The experimental configuration investigated was core 1A of the LWR-PROTEUS Phase I project, where 61 different fuel pins, representing ~64% of the assembly, were gamma-scanned individually. Calculated (C) and measured (E) values have been compared in terms of C/E distributions. For Ftot, the standard deviations are 1.2% for HELIOS, 0.9% for CASMO-4, 0.8% for MCNP4B, and 1.7% for BOXER. Standard deviations of 1.1% for HELIOS, CASMO-4, and MCNP4B and 1.2% for BOXER were obtained in the case of C8. Despite the high degree of accuracy observed on the average, it was found that the five burnable-absorber fuel pins investigated showed a noticeable underprediction of Ftot, quite systematically, for the deterministic codes evaluated (average C/E for the burnable-absorber fuel pins in the range 0.974 to 0.988, depending on the code).