ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Do Sam Kim, Nam Zin Cho
Nuclear Science and Engineering | Volume 140 | Number 3 | March 2002 | Pages 267-284
Technical Paper | doi.org/10.13182/NSE02-A2260
Articles are hosted by Taylor and Francis Online.
To develop kinetics calculational capability of the analytic function expansion nodal methodology for space-dependent feedback problems, a novel method with the time-dependent solution decomposed into an analytic part and a polynomial correction part is proposed. The analytic part consists of the analytic solutions of the "quasi-static" diffusion equation and the polynomial part is determined by applying a Galerkin scheme. The results tested on several benchmark problems (two-dimensional and three-dimensional) show that 1 node/assembly calculation and a large time-step size can be used for high accuracy. The new feedback calculation method removes almost all the errors induced from space-dependent feedback. Also, it is shown that the coarse group rebalance acceleration scheme and conventional techniques for kinetics calculation (exponential transformation for time variable and bilinear weighting for control rod cusping problem) can be easily incorporated into the method.