ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Toshio Kawai, Kotaro Inoue, Hiroshi Motoda, Tomofumi Kobayashi, Takashi Kiguchi
Nuclear Science and Engineering | Volume 50 | Number 1 | January 1973 | Pages 63-72
Technical Paper | doi.org/10.13182/NSE73-A22589
Articles are hosted by Taylor and Francis Online.
Characteristics of an ideal cascade are analyzed by two differential equations representing the conservation of UF6 and 235UF6 flow. The controlling variables are identified as the cut and the separation factor of centrifuges and of stages as well as feed flow rate. The controlled variables are flow rate and enrichment of stages, especially of the product and waste. The sensitivity of the controlled variables to the controlling variables are analyzed by linearizing the conservation equations, and analytic expressions are obtained. The change in the separative work of the cascade is a sum of changes in the separative work of the constituent centrifuges. When the flow rate is chosen to optimize the separative work of a single centrifuge, the plant separative work is maximum and stationary at the rated feed flow. It has been demonstrated in a few examples that these simple relations for the ideal cascade are useful for the planning, design, and operation of cascade plants.