ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Ariz. governor vetoes “fast track” bill for nuclear
Gov. Katie Hobbs put the brakes on legislation that would have eliminated some of Arizona’s regulations and oversight of small modular reactors, technology that is largely under consideration by data centers and heavy industrial power users.
A. W. Cronenberg, H. K. Fauske, D. T. Eggen
Nuclear Science and Engineering | Volume 50 | Number 1 | January 1973 | Pages 53-62
Technical Paper | doi.org/10.13182/NSE73-A22588
Articles are hosted by Taylor and Francis Online.
As part of the liquid-metal fast breeder reactor (LMFBR) safety program, the consequences of a hypothetical molten-fuel release into sodium coolant following fuel pin failure(s) must be evaluated, in order that design constraints can be established to maximize the safety and minimize the economical penalties of such an event. This work represents the first attempt to interpret the voiding rates obtained from an in-pile, fuel-failure experiment in the TREAT reactor in terms of a molten fuel-coolant interaction. Results indicate that it is not only possible to reduce in-pile data to a workable form, but also to obtain representation of loop conditions for simple geometries. The analysis has been successful in reproducing the experimental voiding history in a selected TREAT experiment. It is further shown that the formation of condensate at cold boundaries significantly reduces the amount of energy imparted to the expanding vapor bubble, which in turn limits the extent of the thermal-to-mechanical energy conversion process. It is important to account for this effect when extrapolating in-pile results to reactor conditions.