ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Otohiko Aizawa, Hiroyuki Kadotani, Keiji Kanda, Yoshiaki Fujita
Nuclear Science and Engineering | Volume 50 | Number 1 | January 1973 | Pages 38-45
Technical Paper | doi.org/10.13182/NSE73-A22586
Articles are hosted by Taylor and Francis Online.
A new method of pulsed neutron experimentation is proposed and successfully applied to a beryllium metal system. The present technique utilizes the γ-ray flash from an electron linear accelerator. The employment of an “internal” neutron source, i.e., the (γ, n) reaction in beryllium, which is “softer” than the often used “external” 14-MeV neutrons from a generator, improves the state of the art of the die-away technique in beryllium. The reduction of background neutrons makes it possible to measure the decay curve until ∼ 1800 µsec after a burst even for a small beryllium assembly of 15 × 15 × 15 cm in dimension (B2 = 0.101 cm-2), while in earlier experiments the decay curves have been measured only until ∼600 µsec for such a small beryllium assembly. The present analysis of decay curves indicates that the assumption made by Kothari, who derived the limit of a discrete decay constant for crystalline moderators, is not valid at least for beryllium. On the other hand, Corngold’s limit is consistent with the experimental results.