ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
General Atomics marks completion of ITER’s superconducting fusion magnet
General Atomics last week celebrated the completion of the central solenoid modules for the ITER reactor being built in southern France. Designed to demonstrate the scientific and technological feasibility of fusion power, the ITER tokamak will be the world’s largest experimental fusion facility.
J. T. Mihalczo
Nuclear Science and Engineering | Volume 49 | Number 4 | December 1972 | Pages 489-504
Technical Paper | doi.org/10.13182/NSE72-A22568
Articles are hosted by Taylor and Francis Online.
Cylinders and cylindrical annuli of uranium metal (93.15 wt% 235U), with diameters varying from 7 to 15 in., were assembled to delayed criticality with graphite reflectors varying in thickness up to 18 in. or with an effectively infinite thickness polyethylene on all outer surfaces. In one series of measurements a polyethylene reflector was also placed adjacent to only one flat surface of the cylinders. The multiplication factor calculated by both Sn transport and Monte Carlo methods, with various sets of cross sections agreed very well with the experimental values. As a result of the high order of Sn and the large number of spatial intervals required, the computing time for the transport theory calculations was a factor of 10 larger than that required for the Monte Carlo calculations with standard deviations of 1%.