ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
William J. Westlake, Jr., A. F. Henry
Nuclear Science and Engineering | Volume 49 | Number 4 | December 1972 | Pages 482-488
Technical Paper | doi.org/10.13182/NSE72-A22567
Articles are hosted by Taylor and Francis Online.
A method is proposed for treating depletion effects in a nuclear reactor by a mathematical model in which the time derivative of the neutron flux is retained and the reactor is kept at its desired power level through operation of a control system actuated by any differences between the actual and desired power level. The criticality searches required with the conventional depletion method to find consistent density-temperature profiles, control rod positions, xenon distribution, and flux shapes are thereby avoided. The time-dependent flux, control, and isotopic concentration equations are linearized and solved simultaneously by a numerical procedure that permits time steps as large as those employed with conventional depletion codes. Simple numerical examples that test the essential features of the method are presented.