ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Perpetual Atomics, QSA Global produce Am fuel for nuclear space power
U.K.-based Perpetual Atomics and U.S.-based QSA Global claim to have achieved a major step forward in processing americium dioxide to fuel radioisotope power systems used in space missions. Using an industrially scalable process, the companies said they have turned americium into stable, large-scale ceramic pellets that can be directly integrated into sealed sources for radioisotope power systems, including radioisotope heater units (RHUs) and radioisotope thermoelectric generators (RTGs).
Kalimullah, K. S. Ram, G. Srikantiah
Nuclear Science and Engineering | Volume 49 | Number 3 | November 1972 | Pages 376-384
Technical Note | doi.org/10.13182/NSE72-A22550
Articles are hosted by Taylor and Francis Online.
A closed form expression for the Laplace transform of lethargy-dependent neutron age τ ⊥(u) from zero lethargy to any lethargy u in a slab lattice of two materials, which are characterized by constant cross-sections, is obtained by solving Fermi age equation with a plane neutron source at the midplane of one of the slabs of an infinite lattice. Due to complexity of the Laplace transform obtained for τ⊥(u), numerical inversion is carried out to obtain (a) neutron age from 2 MeV to indium resonance energy 1.45 eV in a number of Al-H2O lattices ranging from pure aluminum to pure water and (b) neutron age as a function of lethargy in 5-5 cm AI-H2O lattice. The results obtained are in satisfactory agreement with the existing literature in those few cases in which experimental or Monte Carlo values are available. At the same Al-H2O volume ratio, neutron age is found to increase or decrease with increasing plate thickness depending on the neutron source location in aluminum or water respectively. Furthermore, everything remaining the same neutron age is smaller with the source in water than in aluminum.