ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Kalimullah, K. S. Ram, G. Srikantiah
Nuclear Science and Engineering | Volume 49 | Number 3 | November 1972 | Pages 376-384
Technical Note | doi.org/10.13182/NSE72-A22550
Articles are hosted by Taylor and Francis Online.
A closed form expression for the Laplace transform of lethargy-dependent neutron age τ ⊥(u) from zero lethargy to any lethargy u in a slab lattice of two materials, which are characterized by constant cross-sections, is obtained by solving Fermi age equation with a plane neutron source at the midplane of one of the slabs of an infinite lattice. Due to complexity of the Laplace transform obtained for τ⊥(u), numerical inversion is carried out to obtain (a) neutron age from 2 MeV to indium resonance energy 1.45 eV in a number of Al-H2O lattices ranging from pure aluminum to pure water and (b) neutron age as a function of lethargy in 5-5 cm AI-H2O lattice. The results obtained are in satisfactory agreement with the existing literature in those few cases in which experimental or Monte Carlo values are available. At the same Al-H2O volume ratio, neutron age is found to increase or decrease with increasing plate thickness depending on the neutron source location in aluminum or water respectively. Furthermore, everything remaining the same neutron age is smaller with the source in water than in aluminum.