ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
House, Senate bills aim to improve nuclear decommissioning and waste disposal
Two bills were introduced in the last several weeks aiming to address nuclear power at the end of life—decommissioning plants and recycling used fuel.
M. opi
Nuclear Science and Engineering | Volume 49 | Number 3 | November 1972 | Pages 370-376
Technical Note | doi.org/10.13182/NSE72-A22549
Articles are hosted by Taylor and Francis Online.
A new approach to the determination of average neutron transport properties of regular lattices is presented in a form amenable to any desired order of approximation. It is based on the time dependent one group integro-differential transport equation in which the cross sections are expanded in Fourier series corresponding to the periodicity of the lattice. The integral transform method yields in this case the Fourier series also for the neutron density, the zero’th term of which is separated out as the average over the lattice. The remaining Fourier coefficients are solved by a method analogous to the collision probability method and expressed in terms of the angular moments of the average neutron density. An approximate integral transform of the transport equation for the average neutron angular density is obtained that contains through its effective scattering integral the effects of the anisotropy and of the heterogeneity of the lattice. The method is applied to the problem of anisotropic diffusion constants in lattices containing voids, in particular, the diffusion constant parallel to empty channels at large channel radia is resolved. As an example, the simultaneous determination of the disadvantage factor and the anisotropic diffusion constant is also presented.