ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
M. opi
Nuclear Science and Engineering | Volume 49 | Number 3 | November 1972 | Pages 370-376
Technical Note | doi.org/10.13182/NSE72-A22549
Articles are hosted by Taylor and Francis Online.
A new approach to the determination of average neutron transport properties of regular lattices is presented in a form amenable to any desired order of approximation. It is based on the time dependent one group integro-differential transport equation in which the cross sections are expanded in Fourier series corresponding to the periodicity of the lattice. The integral transform method yields in this case the Fourier series also for the neutron density, the zero’th term of which is separated out as the average over the lattice. The remaining Fourier coefficients are solved by a method analogous to the collision probability method and expressed in terms of the angular moments of the average neutron density. An approximate integral transform of the transport equation for the average neutron angular density is obtained that contains through its effective scattering integral the effects of the anisotropy and of the heterogeneity of the lattice. The method is applied to the problem of anisotropic diffusion constants in lattices containing voids, in particular, the diffusion constant parallel to empty channels at large channel radia is resolved. As an example, the simultaneous determination of the disadvantage factor and the anisotropic diffusion constant is also presented.