ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
N. N. Kaushal, B. K. Malaviya, M. Becker, E.T. Burns, E. R. Gaerttner
Nuclear Science and Engineering | Volume 49 | Number 3 | November 1972 | Pages 330-348
Technical Paper | doi.org/10.13182/NSE72-A22546
Articles are hosted by Taylor and Francis Online.
Fast neutron spectra in a cuboidal assembly of uranium depleted in the 235U isotope have been measured for the purpose of providing integral checks on cross-section data pertinent to fast reactor development. Spectral measurements have been made at three different radial distances and several different angles, and cover an energy range from 10 keV to 10 MeV. The experimental spectra are compared with Sn transport calculations involving ENDF/B-I, ENDF/B-II, KEDAK (from Karlsruhe) files, and a multigroup set from Argonne National Laboratory and conclusions are drawn as to the adequacy of these data for predicting measured spectra. Extensive use is made of the continuous slowing down theory to pinpoint specific areas of uncertainty in the cross-section data. From a comparison of the experimental spectra with the calculations, it is concluded that the neutron capture cross-section data in the 238U ENDF/B files should be lowered by about 10% in the range 10 to 40 keV. Additionally, the slowing down effectiveness of inelastic scattering in the range 40 to 500 keV should be lowered by about 25%. Discrepancies among various data files are also observed in the inelastic slowing down effectiveness in the range 1 to 2 MeV.