ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Perpetual Atomics, QSA Global produce Am fuel for nuclear space power
U.K.-based Perpetual Atomics and U.S.-based QSA Global claim to have achieved a major step forward in processing americium dioxide to fuel radioisotope power systems used in space missions. Using an industrially scalable process, the companies said they have turned americium into stable, large-scale ceramic pellets that can be directly integrated into sealed sources for radioisotope power systems, including radioisotope heater units (RHUs) and radioisotope thermoelectric generators (RTGs).
Hans G. Kaper, Gary K. Leaf, Arthur J. Lindeman
Nuclear Science and Engineering | Volume 49 | Number 1 | September 1972 | Pages 27-48
Technical Paper | doi.org/10.13182/NSE72-A22525
Articles are hosted by Taylor and Francis Online.
This paper contains the results of detailed comparison studies of the efficiency of high order finite element approximations vs low order finite difference approximations, for the numerical solution of the static multigroup diffusion equation in two dimensions. The comparisons are based on the execution times for a Keff calculation with a prescribed precision for two particular computer programs— HOD (finite elements) and D ARC2D (finite differences). The calculations were performed for three different types of reactor configurations: a simple two-zone configuration with two energy groups, a multizone configuration [1000-MW(e) LMFBR mockup] with four energy groups, and a loosely coupled configuration with two energy groups. The conclusions are: 1. The use of high order approximation procedures based on finite element methods leads to substantial execution time savings and offers not just a viable alternative to the use of low order approximation procedures based on finite difference methods; it is, indeed, a significant advancement in computational capability. 2. With high order approximation procedures based on finite element methods it is possible to obtain, at reasonable cost, solutions to the multigroup diffusion equation which are sufficiently accurate that any errors can be attributed to either the diffusion theory approximation or other approximations in the reactor model, rather than to the numerical approximation procedure. 3. Solutions obtained with the finite element method provide as much accuracy in the flux inventories as in the multiplication factor.