ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
R. C. Lloyd, E. D. Clayton, L. E. Hansen
Nuclear Science and Engineering | Volume 48 | Number 3 | July 1972 | Pages 300-304
Technical Paper | doi.org/10.13182/NSE72-A22487
Articles are hosted by Taylor and Francis Online.
Experiments were performed to establish the effect of a soluble neutron absorber (gadolinium nitrate) on the criticality of plutonium nitrate solutions. The solutions contained plutonium at concentrations of ∼116 g Pu/liter and at ∼363 g Pu/liter. Measured quantities of gadolinium nitrate were mixed with these solutions to produce changes in critical solution height within a 24-in. -diam water-reflected cylinder. Gadolinium concentrations up to 20.25 g Gd/liter were used and the effect determined through the observed change in height. Monte Carlo calculations were used to compute the criticality factors (keff’s) for each of the measured critical configurations. The computed factors were below unity in each case (largest departure about 2% less than unity). The gadolinium proved to be an effective neutron absorber. Its effectiveness decreased significantly, however, in the higher plutonium concentration and faster neutron spectrum. Although comparable values of k∞ were computed (1.603 and 1.503) for the two plutonium concentrations in the experiments, the calculations show 2.4 g Gd/liter would be required to reduce k∞ to unity in the first case, whereas about 72 g Gd/liter would have been required in the second (316 g Pu/liter solution). Curves were prepared showing the computed quantities of gadolinium required to reduce k∞ to unity as a function of plutonium concentration. Also included are computed critical radii for infinitely long cylinders of plutonium nitrate solution for several different gadolinium concentrations. There was no evidence of chemical instability (or precipitation) of the gadolinium in the plutonium nitrate solution during the course of the experiments and over a 1-mo long test (a question of concern in using soluble poison for criticality control).