ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Zbigniew Weiss
Nuclear Science and Engineering | Volume 48 | Number 3 | July 1972 | Pages 235-247
Technical Paper | doi.org/10.13182/NSE72-A22482
Articles are hosted by Taylor and Francis Online.
In one-dimensional systems which consist of N nodes, the two N response matrix equations for the partial currents through the node interfaces have been transformed into a set of N three-point equations with the total in-current per node as the new variable. The resulting coefficients which describe the coupling between neighboring nodes are expressed in terms of the reflection and transmission matrices of the invariant imbedding theory. These coupling coefficients can be compared with those of other nodal equations. In the case of slab geometry this has been illustrated by a direct comparison with the familiar finite difference formulation with the average flux per node as the dependent variable. Also the relation between the method presented here and the so-called rigorous finite difference equations has been established. The advantage of this method lies in the fact that the flexibility of the response matrix methods—which describe the nodes in terms of invariant imbedding concepts—has been condensed into the conventional three-point finite difference scheme, for which many well-established solution methods exist.