ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
House, Senate bills aim to improve nuclear decommissioning and waste disposal
Two bills were introduced in the last several weeks aiming to address nuclear power at the end of life—decommissioning plants and recycling used fuel.
D. E. Bartine, R. G. Alsmiller, Jr., F. R. Mynatt, W. W. Engle, Jr., J. Barish
Nuclear Science and Engineering | Volume 48 | Number 2 | June 1972 | Pages 159-178
Technical Paper | doi.org/10.13182/NSE72-A22468
Articles are hosted by Taylor and Francis Online.
The one-dimensional discrete ordinates code ANISN has been adapted to simulate the transport of low-energy (on the order of a few MeV) electrons. Two different calculational techniques have been utilized for the treatment of electron-electron collisions that result in a small energy transfer. One method treats such collisions by a continuous slowing down approximation, while the other method treats these collisions by the use of a very approximate cross section. Calculated results obtained with ANISN are compared with experimental data for the transmitted energy and angular distributions for 1-, 2.5-, 4-, and 8-MeV electrons normally incident on aluminum slabs of various thicknesses and for 1-MeV electrons normally incident on a gold slab. The calculated and experimental results are in reasonably good agreement for the aluminum slabs but are in poor agreement for the gold slab. Calculated results obtained with ANISN are also compared with calculated results obtained with Monte Carlo methods.