ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Ariz. governor vetoes “fast track” bill for nuclear
Gov. Katie Hobbs put the brakes on legislation that would have eliminated some of Arizona’s regulations and oversight of small modular reactors, technology that is largely under consideration by data centers and heavy industrial power users.
J. K. Dickens
Nuclear Science and Engineering | Volume 48 | Number 1 | May 1972 | Pages 78-86
Technical Paper | doi.org/10.13182/NSE72-A22458
Articles are hosted by Taylor and Francis Online.
Gamma-ray spectra have been obtained for reactions involving neutron interactions with a sample of natural calcium. Gamma rays were observed which are associated with the reactions 40Ca(n,n’γ)40Ca, 40(n,pγ)40K, 40Ca(n,αγ)37Ar, and 42,44Ca. Incident neutron energies wereEn= 4.85, 5.4,6.45, 7.0, 7.5, and 8.05 MeV, and the scattering angle was θγ = 125 deg. The gamma rays were detected using a 45-cm3 coaxial Ge(Li) detector placed 100 cm from the sample; time-of-flight was used with the gamma-ray detector to discriminate against pulses due to neutrons and background gamma radiation. The sample was 20 g of natural calcium metal in the form of a right circular cylinder. The incident neutron beam was produced by bombarding a deuterium-filled gas cell with the pulsed deuteron beam of appropriate energy from the ORNL 6-MV Van de Graaff. The resulting neutron beam was monitored using a scintillation counter; a time-of-flight spectrum from this detector was recorded simultaneously with the gamma-ray data. These data have been studied to obtain absolute cross sections for production of gamma rays from calcium for the incident neutron energies. More than 50 gamma rays were correlated with transitions among the residual nuclei; these assigned gamma rays have >90% of the total gamma production cross section for En ≤ 6.45 MeV. All unplaced gamma rays have small cross sections and are most likely associated with transitions in 40K. The cross sections have been compared, where possible, with previously measured values and with results of the most recent evaluation for calcium with generally good agreement. Several important differences with previous data are discussed.