ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE extends Centrus’s HALEU production contract by one year
Centrus Energy has announced that it has secured a contract extension from the Department of Energy to continue—for one year—its ongoing high-assay low-enriched uranium (HALEU) production at the American Centrifuge Plant in Piketon, Ohio, at an annual rate of 900 kilograms of HALEU UF6. According to Centrus, the extension is valued at about $110 million through June 30, 2026.
J. K. Dickens
Nuclear Science and Engineering | Volume 48 | Number 1 | May 1972 | Pages 78-86
Technical Paper | doi.org/10.13182/NSE72-A22458
Articles are hosted by Taylor and Francis Online.
Gamma-ray spectra have been obtained for reactions involving neutron interactions with a sample of natural calcium. Gamma rays were observed which are associated with the reactions 40Ca(n,n’γ)40Ca, 40(n,pγ)40K, 40Ca(n,αγ)37Ar, and 42,44Ca. Incident neutron energies wereEn= 4.85, 5.4,6.45, 7.0, 7.5, and 8.05 MeV, and the scattering angle was θγ = 125 deg. The gamma rays were detected using a 45-cm3 coaxial Ge(Li) detector placed 100 cm from the sample; time-of-flight was used with the gamma-ray detector to discriminate against pulses due to neutrons and background gamma radiation. The sample was 20 g of natural calcium metal in the form of a right circular cylinder. The incident neutron beam was produced by bombarding a deuterium-filled gas cell with the pulsed deuteron beam of appropriate energy from the ORNL 6-MV Van de Graaff. The resulting neutron beam was monitored using a scintillation counter; a time-of-flight spectrum from this detector was recorded simultaneously with the gamma-ray data. These data have been studied to obtain absolute cross sections for production of gamma rays from calcium for the incident neutron energies. More than 50 gamma rays were correlated with transitions among the residual nuclei; these assigned gamma rays have >90% of the total gamma production cross section for En ≤ 6.45 MeV. All unplaced gamma rays have small cross sections and are most likely associated with transitions in 40K. The cross sections have been compared, where possible, with previously measured values and with results of the most recent evaluation for calcium with generally good agreement. Several important differences with previous data are discussed.