ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE extends Centrus’s HALEU production contract by one year
Centrus Energy has announced that it has secured a contract extension from the Department of Energy to continue—for one year—its ongoing high-assay low-enriched uranium (HALEU) production at the American Centrifuge Plant in Piketon, Ohio, at an annual rate of 900 kilograms of HALEU UF6. According to Centrus, the extension is valued at about $110 million through June 30, 2026.
W. N. McElroy, R. J. Armani, E. Tochilin
Nuclear Science and Engineering | Volume 48 | Number 1 | May 1972 | Pages 51-71
Technical Paper | doi.org/10.13182/NSE72-A22456
Articles are hosted by Taylor and Francis Online.
Previously reported inconsistencies between activation detector and n, p scattering/time-of-flight (TOF) measurements of the thermal-neutron-induced 235U fission spectrum prompted a comparison of such measurements in the core center and on the surface of a bare 235U assembly, referred to as Godiva. For the present study, TOF measurements and multiple foil measurements of the core and surface spectra of the APFA-III-Godiva are compared. Comparison of the integral fluxes above specified energies for the two methods shows agreement to within ∼5% at core center. Results obtained at in. from the core surface, however, show disagreement between the multiple foil and TOF (and previously reported photo-plate data) which is similar to that found for measurements in the fissionspectrum. Results for the fission spectrum are re-analyzed using the same evaluated energy-dependent cross sections as used for the Godiva study but with a larger number of foil reactions than previously available. A Monte Carlo error analysis code is used for the assignment of errors for the activation results for the Godiva and fission spectrum studies. It is concluded that if the activation measurements of the Godiva and fission spectrum remain firm, and significant changes in current evaluated reaction cross sections are not effected, then increases up to as much as 10 to 15% in the mean energy of the Godiva leakage and fissionspectrum must be considered.