ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Ariz. governor vetoes “fast track” bill for nuclear
Gov. Katie Hobbs put the brakes on legislation that would have eliminated some of Arizona’s regulations and oversight of small modular reactors, technology that is largely under consideration by data centers and heavy industrial power users.
W. N. McElroy, R. J. Armani, E. Tochilin
Nuclear Science and Engineering | Volume 48 | Number 1 | May 1972 | Pages 51-71
Technical Paper | doi.org/10.13182/NSE72-A22456
Articles are hosted by Taylor and Francis Online.
Previously reported inconsistencies between activation detector and n, p scattering/time-of-flight (TOF) measurements of the thermal-neutron-induced 235U fission spectrum prompted a comparison of such measurements in the core center and on the surface of a bare 235U assembly, referred to as Godiva. For the present study, TOF measurements and multiple foil measurements of the core and surface spectra of the APFA-III-Godiva are compared. Comparison of the integral fluxes above specified energies for the two methods shows agreement to within ∼5% at core center. Results obtained at in. from the core surface, however, show disagreement between the multiple foil and TOF (and previously reported photo-plate data) which is similar to that found for measurements in the fissionspectrum. Results for the fission spectrum are re-analyzed using the same evaluated energy-dependent cross sections as used for the Godiva study but with a larger number of foil reactions than previously available. A Monte Carlo error analysis code is used for the assignment of errors for the activation results for the Godiva and fission spectrum studies. It is concluded that if the activation measurements of the Godiva and fission spectrum remain firm, and significant changes in current evaluated reaction cross sections are not effected, then increases up to as much as 10 to 15% in the mean energy of the Godiva leakage and fissionspectrum must be considered.