ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Ariz. governor vetoes “fast track” bill for nuclear
Gov. Katie Hobbs put the brakes on legislation that would have eliminated some of Arizona’s regulations and oversight of small modular reactors, technology that is largely under consideration by data centers and heavy industrial power users.
John C. Lee, Thomas H. Pigford
Nuclear Science and Engineering | Volume 48 | Number 1 | May 1972 | Pages 28-44
Technical Paper | doi.org/10.13182/NSE72-A22454
Articles are hosted by Taylor and Francis Online.
Theoretical analysis of the explosive disassembly of fast reactors, following accidental loss of coolant and melting and gravity compaction of the fuel material,has been undertaken. A general expression for the rate of reactivity feedback dueto material disassembly in a core with more than one enrichment zone has been derived. Energy release in cylindrical geometry has been calculated with the effects due to zonal interfaces properly considered in the limit of zero acoustic speeds. The effect on the energy release of the assumption of fixed fuel density in the fuel equation-of-state has been investigated for oxide-fueled zoned cores. Fuel zoning can result in either greater or less energy release, as compared with a homogeneous core of the same fuel inventory and the same initial conditions, depending on the gradient of the density worth function at the zonal interface. In some large fast breeder reactors the gradient of the density worth function may be negative at the zonal interface. The positive pressure gradient at the interface during the disassembly phase of a transient results in inwardly directed fuel displacement at the interface and in a positive contribution to the disassembly reactivity feedback. Typically, this can increase the energy released in a disassembly transient by as much as 35%. The effect on energy release of the assumption of fixed fuel density in the fuel equation-of-state was not significant for the transients initiated in the completely molten sodium-free reactor cores studied in this investigation.