ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
John F. Carew, Kai Hu
Nuclear Science and Engineering | Volume 140 | Number 1 | January 2002 | Pages 70-85
Technical Paper | doi.org/10.13182/NSE02-A2245
Articles are hosted by Taylor and Francis Online.
Pressure vessel surveillance and benchmark dosimetry measurements are used to determine the effects of the plant-specific as-built core/internals/vessel materials and geometry on the vessel fluence. In several recent applications, uncertainties in these measurements and their interpretation have prevented the use of the dosimetry measurements in the benchmarking of the vessel fluence calculations. In this analysis, the uncertainties having a significant effect on the measurement-to-calculation comparisons used in the benchmarking are identified and evaluated, and the effect of these uncertainties on the >1-MeV vessel fluence derived from the measurements is determined.The vessel >1-MeV fluence is determined by a weighted sum of the response from a set of 63Cu, 46Ti, 58Ni, 54Fe, 238U, and 237Np fast neutron dosimeters located on the outer wall of the thermal shield, vessel inner wall and/or in the cavity outside the vessel. The uncertainty estimates assume a well-maintained and calibrated measurement system and the use of state-of-the-art methods for interpreting the measurements. In the case where the effects of the individual uncertainties on the fluence are correlated, the specific correlation is calculated and properly included in the fluence uncertainty estimate.The uncertainty in the >1-MeV fluence inferred from dosimeters located on the outer wall of the thermal shield or on the inner wall of the vessel ranges from 11 to 15% (1) depending on the specific type of fast neutron dosimeter. The uncertainty in the >1-MeV fluence inferred from dosimeters located in the cavity is significantly higher, due to the uncertainty in the iron cross section and the resulting uncertainty in the extrapolation to the vessel inner wall, and ranges from 19 to 23% depending on the type of dosimeter. These vessel fluence uncertainties are substantially larger than the uncertainty in the measured dosimeter reaction rates of 6 to 8% from which the fluence was derived.