ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New coolants, new fuels: A new generation of university reactors
Here’s an easy way to make aging U.S. power reactors look relatively youthful: Compare them (average age: 43) with the nation’s university research reactors. The 25 operating today have been licensed for an average of about 58 years.
D. N. Bridges, J. D. Clement
Nuclear Science and Engineering | Volume 47 | Number 4 | April 1972 | Pages 421-434
Technical Paper | doi.org/10.13182/NSE72-A22434
Articles are hosted by Taylor and Francis Online.
This investigation involved a theoretical and experimental study of space-dependent reactor transfer functions with temperature feedback. The reactor transfer function under investigation was the neutron flux response to an input perturbation or source. An existing theoretical model, known as the complex source method, was extended to include temperature feedback effects and the resultant equations were programmed for a model of the Georgia Tech Research Reactor (GTRR). Spatial transfer function measurements were made in the GTRR using an in-core pile oscillator employing a pseudo-random binary sequence. Several detector locations were investigated for both zero-power and at-power (900 kW) conditions over a frequency range from 4 × 10−4 to 8.5 Hz. Data were taken and stored on magnetic tape using two PDP-8 computers and a magnetic tape unit. The theoretical calculations and the experimental results agreed quite closely. Temperature feedback effects for the GTRR were observed to occur at frequencies of 2 × 10−2 Hz and lower, and to become quite pronounced below 1 × 10−3 Hz. Spatial effects were observed to be significant only for frequencies above 1 Hz. The agreement of the calculations with the experimental results served to validate the theoretical model.