ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE extends Centrus’s HALEU production contract by one year
Centrus Energy has announced that it has secured a contract extension from the Department of Energy to continue—for one year—its ongoing high-assay low-enriched uranium (HALEU) production at the American Centrifuge Plant in Piketon, Ohio, at an annual rate of 900 kilograms of HALEU UF6. According to Centrus, the extension is valued at about $110 million through June 30, 2026.
D. N. Bridges, J. D. Clement
Nuclear Science and Engineering | Volume 47 | Number 4 | April 1972 | Pages 421-434
Technical Paper | doi.org/10.13182/NSE72-A22434
Articles are hosted by Taylor and Francis Online.
This investigation involved a theoretical and experimental study of space-dependent reactor transfer functions with temperature feedback. The reactor transfer function under investigation was the neutron flux response to an input perturbation or source. An existing theoretical model, known as the complex source method, was extended to include temperature feedback effects and the resultant equations were programmed for a model of the Georgia Tech Research Reactor (GTRR). Spatial transfer function measurements were made in the GTRR using an in-core pile oscillator employing a pseudo-random binary sequence. Several detector locations were investigated for both zero-power and at-power (900 kW) conditions over a frequency range from 4 × 10−4 to 8.5 Hz. Data were taken and stored on magnetic tape using two PDP-8 computers and a magnetic tape unit. The theoretical calculations and the experimental results agreed quite closely. Temperature feedback effects for the GTRR were observed to occur at frequencies of 2 × 10−2 Hz and lower, and to become quite pronounced below 1 × 10−3 Hz. Spatial effects were observed to be significant only for frequencies above 1 Hz. The agreement of the calculations with the experimental results served to validate the theoretical model.