ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Ariz. governor vetoes “fast track” bill for nuclear
Gov. Katie Hobbs put the brakes on legislation that would have eliminated some of Arizona’s regulations and oversight of small modular reactors, technology that is largely under consideration by data centers and heavy industrial power users.
George J. Bohm, Amir N. Nahavandi
Nuclear Science and Engineering | Volume 47 | Number 4 | April 1972 | Pages 391-408
Technical Paper | doi.org/10.13182/NSE72-A22431
Articles are hosted by Taylor and Francis Online.
The dynamic analysis of the reactor internal structure in a typical pressurized-water reactor system, subjected to step, periodic, and seismic excitations, is presented. Employing the finite element approach of structural analysis, the governing differential equations describing the motion of the system are set up and integrated numerically in time. It is shown that the introduction of three types of structural elements, elastic, rigid and pin-joint members with nodes having three degrees of freedom, provides an adequate mathematical model for the solution of reactor structural dynamics problems. A main distinctive feature of this analysis is the application of “elements” global stiffness matrices in place of the standard structural global stiffness matrix. It is shown that this feature reduces the computer storage requirement and running time considerably. An examination of the system dynamic response characteristics indicates that when the clearance between the reactor internal components is relatively small, impact between various components could occur. The magnitude of the impact forces for periodic and seismic excitations is computed. Furthermore, a procedure for the calculation of the upper bound of integration time step is presented which ensures the numerical stability of the solution.