ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Oklo signs MOU to partner with Korea Hydro & Nuclear Power
Oklo cofounder and CEO Jacob DeWitte and KHNP CEO Joo-ho Whang following the virtual signing of an MOU. (Source: Oklo)
Oklo announced last week that it hopes to expand development and global deployment of its advanced nuclear technology through a new partnership with Korea Hydro & Nuclear Power.
The memorandum of understanding includes plans for the companies to advance standard design development and global deployment of Oklo’s planned Aurora Powerhouse, a microreactor that would generate 15 MW and be scalable to 50 MWe. Oklo said each unit can operate for 10 years or longer before refueling.
Oklo and KHNP plan to cooperate on early-stage project development, including manufacturability assessments and planning of major equipment, supply chain development for balance-of-plant systems, and constructability assessments and planning.
George J. Bohm, Amir N. Nahavandi
Nuclear Science and Engineering | Volume 47 | Number 4 | April 1972 | Pages 391-408
Technical Paper | doi.org/10.13182/NSE72-A22431
Articles are hosted by Taylor and Francis Online.
The dynamic analysis of the reactor internal structure in a typical pressurized-water reactor system, subjected to step, periodic, and seismic excitations, is presented. Employing the finite element approach of structural analysis, the governing differential equations describing the motion of the system are set up and integrated numerically in time. It is shown that the introduction of three types of structural elements, elastic, rigid and pin-joint members with nodes having three degrees of freedom, provides an adequate mathematical model for the solution of reactor structural dynamics problems. A main distinctive feature of this analysis is the application of “elements” global stiffness matrices in place of the standard structural global stiffness matrix. It is shown that this feature reduces the computer storage requirement and running time considerably. An examination of the system dynamic response characteristics indicates that when the clearance between the reactor internal components is relatively small, impact between various components could occur. The magnitude of the impact forces for periodic and seismic excitations is computed. Furthermore, a procedure for the calculation of the upper bound of integration time step is presented which ensures the numerical stability of the solution.