ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Ariz. governor vetoes “fast track” bill for nuclear
Gov. Katie Hobbs put the brakes on legislation that would have eliminated some of Arizona’s regulations and oversight of small modular reactors, technology that is largely under consideration by data centers and heavy industrial power users.
Chia-Jung Hsu
Nuclear Science and Engineering | Volume 47 | Number 3 | March 1972 | Pages 380-388
Technical Note | doi.org/10.13182/NSE72-A22426
Articles are hosted by Taylor and Francis Online.
The heat transfer characteristics of a rod which is dislocated from its symmetrical position are studied analytically for slug flow through tightly packed rod bundles (P/D ratio down to ≈1.00). Explicit equations describing the temperature fields in the fuel core, the cladding, and the elemental coolant flow area are obtained by assuming uniform fuel power density. Variation of the rod-average Nusselt number, as well as the heat flux distribution at the outer wall of the cladding, is examined for selected values of σ, the P/D ratio, the cladding thickness parameter, λ(=r1/r2) and the thermal conductivity ratios, κ and κw. The present solutions, when specialized to the case of σ = 0.0 (i.e., no rod displacement) show excellent agreement with the results reported by Axford and by Dwyer and Berry who studied the corresponding three-region and two-region problems, respectively, for symmetrical rod bundles with no rod displacement.