ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Ariz. governor vetoes “fast track” bill for nuclear
Gov. Katie Hobbs put the brakes on legislation that would have eliminated some of Arizona’s regulations and oversight of small modular reactors, technology that is largely under consideration by data centers and heavy industrial power users.
R. L. French, L. G. Mooney
Nuclear Science and Engineering | Volume 47 | Number 3 | March 1972 | Pages 375-380
Technical Note | doi.org/10.13182/NSE72-A22425
Articles are hosted by Taylor and Francis Online.
The “last-collision” method for computing the air-ground interface effect on scattered neutron intensity is extended to give the effect on the intensity within individual polar angle groups at a detector near the ground. The method yields angle-dependent perturbation factors which can be used to adjust infinite-air angle distributions to account for the presence of an air-ground interface, or to adjust angle distributions from one detector height to another. To determine the factors, a uniform scattering distribution in the air about the detector is assumed, and the fractional contribution from each last-collision center in the air is calculated. In addition, the fraction scattered directly to the detector from the ground surface is calculated using a simplified albedo model. An evaluation of the angle-dependent last-collision model indicated that the results of discrete ordinate calculations for infinite air could be modified to give relative polar angle distributions of the scattered neutron dose near the air-ground interface within 10 to 20% of those calculated directly for the air-over-ground case by the discrete ordinate method.