ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE extends Centrus’s HALEU production contract by one year
Centrus Energy has announced that it has secured a contract extension from the Department of Energy to continue—for one year—its ongoing high-assay low-enriched uranium (HALEU) production at the American Centrifuge Plant in Piketon, Ohio, at an annual rate of 900 kilograms of HALEU UF6. According to Centrus, the extension is valued at about $110 million through June 30, 2026.
R. L. French, L. G. Mooney
Nuclear Science and Engineering | Volume 47 | Number 3 | March 1972 | Pages 375-380
Technical Note | doi.org/10.13182/NSE72-A22425
Articles are hosted by Taylor and Francis Online.
The “last-collision” method for computing the air-ground interface effect on scattered neutron intensity is extended to give the effect on the intensity within individual polar angle groups at a detector near the ground. The method yields angle-dependent perturbation factors which can be used to adjust infinite-air angle distributions to account for the presence of an air-ground interface, or to adjust angle distributions from one detector height to another. To determine the factors, a uniform scattering distribution in the air about the detector is assumed, and the fractional contribution from each last-collision center in the air is calculated. In addition, the fraction scattered directly to the detector from the ground surface is calculated using a simplified albedo model. An evaluation of the angle-dependent last-collision model indicated that the results of discrete ordinate calculations for infinite air could be modified to give relative polar angle distributions of the scattered neutron dose near the air-ground interface within 10 to 20% of those calculated directly for the air-over-ground case by the discrete ordinate method.