ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Oklo signs MOU to partner with Korea Hydro & Nuclear Power
Oklo cofounder and CEO Jacob DeWitte and KHNP CEO Joo-ho Whang following the virtual signing of an MOU. (Source: Oklo)
Oklo announced last week that it hopes to expand development and global deployment of its advanced nuclear technology through a new partnership with Korea Hydro & Nuclear Power.
The memorandum of understanding includes plans for the companies to advance standard design development and global deployment of Oklo’s planned Aurora Powerhouse, a microreactor that would generate 15 MW and be scalable to 50 MWe. Oklo said each unit can operate for 10 years or longer before refueling.
Oklo and KHNP plan to cooperate on early-stage project development, including manufacturability assessments and planning of major equipment, supply chain development for balance-of-plant systems, and constructability assessments and planning.
R. L. French, L. G. Mooney
Nuclear Science and Engineering | Volume 47 | Number 3 | March 1972 | Pages 375-380
Technical Note | doi.org/10.13182/NSE72-A22425
Articles are hosted by Taylor and Francis Online.
The “last-collision” method for computing the air-ground interface effect on scattered neutron intensity is extended to give the effect on the intensity within individual polar angle groups at a detector near the ground. The method yields angle-dependent perturbation factors which can be used to adjust infinite-air angle distributions to account for the presence of an air-ground interface, or to adjust angle distributions from one detector height to another. To determine the factors, a uniform scattering distribution in the air about the detector is assumed, and the fractional contribution from each last-collision center in the air is calculated. In addition, the fraction scattered directly to the detector from the ground surface is calculated using a simplified albedo model. An evaluation of the angle-dependent last-collision model indicated that the results of discrete ordinate calculations for infinite air could be modified to give relative polar angle distributions of the scattered neutron dose near the air-ground interface within 10 to 20% of those calculated directly for the air-over-ground case by the discrete ordinate method.