ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Ariz. governor vetoes “fast track” bill for nuclear
Gov. Katie Hobbs put the brakes on legislation that would have eliminated some of Arizona’s regulations and oversight of small modular reactors, technology that is largely under consideration by data centers and heavy industrial power users.
C. Lajeunesse, W. E. Moore, M. L. Yeater
Nuclear Science and Engineering | Volume 47 | Number 3 | March 1972 | Pages 349-364
Technical Paper | doi.org/10.13182/NSE72-A22420
Articles are hosted by Taylor and Francis Online.
The double-differential scattering cross section of polycrystalline natural uranium carbide (UC) has been measured for incident energies of 0.092, 0.135, and 0.159 eV. Inelastic scattering peaks corresponding to excitation energies of 0.013 and 0.045 eV were observed and are shown to belong to acoustic and optical modes of the UC lattice. A model has been developed using a normal mode analysis based on the Born and Von Kármán approximation, including noncentral forces and considering up to third-nearest neighbors. A theoretical scattering law has been derived based on this analysis. Resolution and multiple scattering effects have been calculated using a new Monte Carlo approach. After the application of these corrections, the double differential cross sections derived from the theoretical scattering law agree with the measurements. The variation of the specific heat with temperature is accurately predicted by the model. The total cross section was also measured for the energy range 0.006 to 3.5 eV. The Bragg peaks due to coherent scattering were resolved up to 0.05 eV. The total cross section calculated from our noncentral force model compares well with this measurement.