ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Ariz. governor vetoes “fast track” bill for nuclear
Gov. Katie Hobbs put the brakes on legislation that would have eliminated some of Arizona’s regulations and oversight of small modular reactors, technology that is largely under consideration by data centers and heavy industrial power users.
B. K. Malaviya, N. N. Kaushal, M. Becker, E. T. Burns, A. Ginsberg, E. R. Gaerttner
Nuclear Science and Engineering | Volume 47 | Number 3 | March 1972 | Pages 329-348
Technical Paper | doi.org/10.13182/NSE72-A22419
Articles are hosted by Taylor and Francis Online.
As part of a comprehensive program devoted to the integral checks of differential microscopic cross-section data pertinent to the LMFBR program, the experimental and analytical investigations of fast neutron transport in bulk assemblies of iron are described. Time-of-flight measured fast-neutron angular flux spectra at different positions in a simple, clean, homogeneous assembly are analyzed using ENDF/B data as input, MC2 code system, and SN transport calculations. In addition, continuous slowing down theory has been developed to complement precise calculations by indicating direct relationships between cross-section uncertainties and spectra; this approach permits integrating other non-ENDF/B data in the analysis. The well-defined integral experiment permits clear-cut interpretation leading to definitive conclusions with respect to input data and also to checks of standard analytical codes. The Karlsruhe (KEDAK) data set and the ENDF/B-I and ENDF/B-II files for iron have been assessed. On the basis of cross-section uncertainties in iron and of their influence on spectra, it is possible to recommend not only preferred data, but also a redirection in emphasis in differential measurements and evaluation. For fast reactor applications, ENDF/B-I set is prefer able, subject to certain limitations.