ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Hisashi Hishida, Tamotsu Sekiya
Nuclear Science and Engineering | Volume 47 | Number 3 | March 1972 | Pages 319-328
Technical Paper | doi.org/10.13182/NSE72-A22418
Articles are hosted by Taylor and Francis Online.
A heterogeneous method of calculating time-dependent reactor core characteristics, such as the time variation in thermal-neutron flux distribution and the reactivity change during fuel and poison burnup, is derived. The lattice consists of an infinite number of similar square zones closely connected to one another. In each zone, identical fuel rods are arranged in a regular lattice with a burnable poison rod of the same geometric dimensions as a fuel rod at the center. Some numerical examples, utilizing the equations derived finally, give the time variation in poison concentration and k∞(t) for a zone showing the heterogeneity effect associated with a burnable poison rod. Since the machine time required to compute the time variation of such core characteristics through fuel life of 11,000 EFPH as shown in the examples is <25 sec on the IBM 360/75 per case, the method may be applied to the preliminary survey calculation for the time-dependent heterogeneous core characteristics of a square lattice including burnable poison rods as well as to more general time-dependent problems related to such lattices.